Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Commun Biol ; 6(1): 450, 2023 04 24.
Article in English | MEDLINE | ID: covidwho-2304980

ABSTRACT

Addressing the elusive specificity of cysteine cathepsins, which in contrast to caspases and trypsin-like proteases lack strict specificity determining P1 pocket, calls for innovative approaches. Proteomic analysis of cell lysates with human cathepsins K, V, B, L, S, and F identified 30,000 cleavage sites, which we analyzed by software platform SAPS-ESI (Statistical Approach to Peptidyl Substrate-Enzyme Specific Interactions). SAPS-ESI is used to generate clusters and training sets for support vector machine learning. Cleavage site predictions on the SARS-CoV-2 S protein, confirmed experimentally, expose the most probable first cut under physiological conditions and suggested furin-like behavior of cathepsins. Crystal structure analysis of representative peptides in complex with cathepsin V reveals rigid and flexible sites consistent with analysis of proteomics data by SAPS-ESI that correspond to positions with heterogeneous and homogeneous distribution of residues. Thereby support for design of selective cleavable linkers of drug conjugates and drug discovery studies is provided.


Subject(s)
COVID-19 , Cysteine , Humans , Proteomics , SARS-CoV-2
2.
Nat Immunol ; 22(11): 1416-1427, 2021 11.
Article in English | MEDLINE | ID: covidwho-1475314

ABSTRACT

Ubiquitin-like protein ISG15 (interferon-stimulated gene 15) (ISG15) is a ubiquitin-like modifier induced during infections and involved in host defense mechanisms. Not surprisingly, many viruses encode deISGylating activities to antagonize its effect. Here we show that infection by Zika, SARS-CoV-2 and influenza viruses induce ISG15-modifying enzymes. While influenza and Zika viruses induce ISGylation, SARS-CoV-2 triggers deISGylation instead to generate free ISG15. The ratio of free versus conjugated ISG15 driven by the papain-like protease (PLpro) enzyme of SARS-CoV-2 correlates with macrophage polarization toward a pro-inflammatory phenotype and attenuated antigen presentation. In vitro characterization of purified wild-type and mutant PLpro revealed its strong deISGylating over deubiquitylating activity. Quantitative proteomic analyses of PLpro substrates and secretome from SARS-CoV-2-infected macrophages revealed several glycolytic enzymes previously implicated in the expression of inflammatory genes and pro-inflammatory cytokines, respectively. Collectively, our results indicate that altered free versus conjugated ISG15 dysregulates macrophage responses and probably contributes to the cytokine storms triggered by SARS-CoV-2.


Subject(s)
COVID-19/immunology , Cytokines/metabolism , Inflammation/immunology , Macrophages/immunology , SARS-CoV-2/physiology , Ubiquitins/metabolism , Cell Differentiation , Coronavirus Papain-Like Proteases/metabolism , Cytokines/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Immune Evasion , Immunity, Innate , Influenza A virus/physiology , Influenza, Human/immunology , Pluripotent Stem Cells/cytology , Ubiquitination , Ubiquitins/genetics , Zika Virus/physiology , Zika Virus Infection/immunology
3.
Trends Microbiol ; 29(11): 1034-1045, 2021 11.
Article in English | MEDLINE | ID: covidwho-1240633

ABSTRACT

Antimicrobial resistance is an increasing global threat and alternative treatments substituting failing antibiotics are urgently needed. Vaccines are recognized as highly effective tools to mitigate antimicrobial resistance; however, the selection of bacterial antigens as vaccine candidates remains challenging. In recent years, advances in mass spectrometry-based proteomics have led to the development of so-called immunopeptidomics approaches that allow the untargeted discovery of bacterial epitopes that are presented on the surface of infected cells. Especially for intracellular bacterial pathogens, immunopeptidomics holds great promise to uncover antigens that can be encoded in viral vector- or nucleic acid-based vaccines. This review provides an overview of immunopeptidomics studies on intracellular bacterial pathogens and considers future directions and challenges in advancing towards next-generation vaccines.


Subject(s)
Bacterial Vaccines , Vaccine Development , Antigens, Bacterial , Mass Spectrometry , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL